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Water Vapor
At present, we’re unable to see oceans on other planets. 
We can only study their atmosphere to collect clues 
about the world below. According to Seager, water 
vapor serves as a smoke signal to researchers. It is 
evidence that liquid water is present, a requirement 
for all life as we know it. 

Seager explains that water vapor gets broken apart 
by ultraviolet radiation from the sun in the process 
of photodissociation. On a small planet without a 
huge reservoir of water, the water vapor would split 
into hydrogen and oxygen, allowing it to escape into 
outer space. Therefore, the presence of water vapor 
in a planet’s atmosphere provides strong evidence 
there will be ocean-like bodies of water on the planet. 

Oxygen
As researchers hunt foreign 
atmospheres, top among the 
list of functional gases they 
are searching for is oxygen, 
which Seager explains is highly 
reactive. It should not exist in an 
atmosphere unless it is produced 
by life. For example, on Earth, 
20% of our atmosphere is made 
up of oxygen where it is primarily 
produced by vegetation and 
photosynthetic bacteria.

Phosphine
Phosphine, a highly toxic gas that was used in 
chemical warfare in World War I, has become a 
focus for Seager’s team. When exploring scientific 
literature, they uncovered evidence that indicates that 
phosphine is actually produced by life on Earth.  

One of the researchers leading 
us into the future of space exploration 
is Dr. Sara Seager, astrophysicist, 
planetary scientist, and professor at 
MIT. Dr. Seager’s research focuses on 
novel space missions and theoretical 
models of exoplanets. 

The Search For Life
Seager’s research was driven by one burning question : 
Could there be Earth-like exoplanets and signs of life 
on other habitable worlds? Though the exploration of 
exoplanets was a nascent field of study, she used her 
early years at Harvard to begin studying exoplanets 
around sun-like stars by evaluating atmospheres of 
the so-called hot Jupiter planets. 

The Next 50 Years In Space Exploration
With more powerful telescopes, researchers will be able 
to begin studying planets closer to the size of Venus and 
Earth, which may even be habitable. Seager foresees 
us reaching this milestone within the next 50 years. 
Seager expects that we will be able to study planets 
of a size similar to Earth and anticipates planets to be 
chemically much more different than Earth.

What makes phosphine of particular interest for its 
potential as a biosignature gas is the lack of false 
positives. It is challenging to produce phosphine. 
It would not be present on planets that have the 
conditions for liquid water. Seager explains, “if you 
were able to identify phosphine on another planet, 
you’ll never be 100% sure that a gas you see is made 
by life, but you would be able to be more confident 
that it was made by life.” 

The Diversity of Exoplanets
Seager’s team is always learning. Some of her team’s 
most recent findings have revealed that exoplanets 
come in all sizes and orbits. Astronomers have revealed 
it is currently easier to find planets that are close to 

their star rather than far away. 
For example, there is a class of 
planets so close to their star that 
the planet’s year, the time it takes 
for the planet to travel around its 
star, is equivalent to one day!

Empowered by cutting edge 
technology, we have much to look 
forward to as we move further 
into exoplanetary exploration. 
Seager hopes the next 50 years 
will be an era of understanding 
atmospheres of planets around 
other stars.  To see a man walking 
on the moon gave rise to the idea 

of humanity in space. As we look to the next 50 years 
of space exploration, one of the profound questions 
is whether life is common or extremely rare in our 
galaxy. Seager thinks that life abounds in space, and 
we could see examples in this century.

The Chemistry Under 
The Atmosphere
As researchers explore the 
atmospheres of other planets, they 
operate under the assumption that 
life on other planets use chemistry. 
Seager explains that it is nearly 
impossible to know the details 
of chemistry of other planets, 
including whether or not the 
chemical ingredients are similar 

to Earth’s. Seager says “what I love about my field of 
work is the ability to combine fundamentals like basic 
chemistry, physics, math, computer programming, and 
engineering. It’s like making a cake, you’re just taking 
these different fundamental ingredients and putting it 
together in a new way to study something new at the 
frontiers.” 

Chemical Signs of Life
In the search for functional gases on exoplanets, a 
return to the fundamentals drives the search for life. 
Exploration may turn up some more obscure molecules 
like dimethyl sulfide or methyl chloride, but some of 
the chief indicators of life Seager and her team look 
for are much more familiar to the layperson. 

A Journey of Exploration
Celebrating the Past, Present and Future of Space

“Being a scientist  
is like being an  

explorer. You have this 
immense curiosity, this 

stubbornness, this resolute  
will that you will go  

forward no matter what  
other people say.”

On July 20th, 1969, Apollo 11 landed on the lunar surface allowing Neil 
Armstrong and Buzz Aldrin to be the first men to walk on the moon. As we 

celebrate the 50th anniversary of this historical achievement, it lends the question:
What about the next 50 years in space exploration? 
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